

Adequate Shear Measurements
Using Gaussian Mixtures

(and Bayesian stuff)

Erin Sheldon
Brookhaven National Laboratory

Gaussian Mixture

How Many, Which Way?
● Three Gaussians seems to be enough when the galaxy

is comparable in size of the PSF. One is a delta
function.

● More Gaussians are needed for galaxies much larger
than the psf.

● For efficiency just throw out the really big galaxies
(there are few), or let the algorithm adapt (T test?)

● Hogg et al. 2012 Independently find that, for flux
measurements, Gaussians are a good representation

● For galaxies choose Co-centric, co-elliptical to avoid
degeneracies. PSF can be more free.

Bayesian Methods

● Apply prior on shapes, necessarily zero-
centered

● Use expectation value of the ellipticity (not
the maximum likelihood).

● Apply a correction for noise and the zero-
centeredness of prior (Miller et al. 2007)

● Requires measurement of the full likelihood.

Simulations

DES Requirement

Cut at S/N_{size} > 20

S/N of the size seems universal
(for a universe with 2 galaxies)

● Unlike detection S/N or shape error, the S/N of
the size measurement seems to be a good
indicator of badness for both Dev. And Exp
galaxies.

● (S/N)_{size} > 20 meets the DES spec in sims.
● Algorithm is super slow because of the full

likelihood evaluation, even with a fast exp()
● Get factor of ~100 speedup with GPUs...

Extra Slides

Computationally Intensive
● Corrections for priors require measuring the full

likelihood surface. Need to measure “tails” of the
distributions precisely.

● Using a fast exponential function (5x faster than C
stdlib) and Monte Carlo Markov Chain (MCMC) to
efficiently explore the surface.

● Takes ~2 seconds per galaxy on a CPU (2.7GHz Intel)
● For DES we must process ~5 billion galaxy images,

thus ~3 million cpu-hours for each run.
● Want many runs.

● We don't have much money, so need to speed this up.

GPU Implementation

● Implemented in OpenCL and C
● Bunch of boiler-plate, pack the data, send it to the

GPU, run a “kernel” on every element of the array.
● Standard C code except for the opencl kernel, which

is compiled at runtime.
● The kernel is simply the evaluation of a sum of

Gaussians

Pixel Parallelization

● Evaluate all pixels at once in parallel.

● Speedup comes from parallelization over pixels, GPU
cores themselves are not faster than CPU cores.

● Factor of > 10 speedup, depending on number of
gaussians evaluated (greater for more gaussians)

● That's great, but we also have > 10 CPU cores on a system
these days so overall that isn't an enormous speedup.

● We are not even close to fully utilizing the GPU for a
25x25 pixel image

Parallelizing “Walkers”

● Remember we evaluate ~20 separate “walkers”
through the likelihood space at each step in the
MCMC chain

● We evaluate the models for all walkers in parallel as
well.

● In principle a factor of 20 speedup.
● In practice 10-15
● memory bandwidth (144GB/s) and exhaustion of

cores (448).

Packing the Data

● It is slow to move data back and forth from the GPU

● Upload the image once, then perform tens of thousands of
likelihood evaluations. (Pad to multiple of 32 bytes).

● For each step in the MCMC chain, upload all parameters at
once. This means packing the parameters for all gaussians at
all points in the parameter space (remember we use 20
parallel “walkers”) into a single array (padded).

● Evaluate the model for each walker onto a single big shared
array holding all rendered images.

● Perform reductions sum((image-model)^2) for each of the 20
walkers and return just 20 numbers: the likelihoods for each
walker

● Re-use the arrays for each step in MCMC chain

Optimizations
● Avoid passing data back and forth to GPU: generate on

GPU if possible
● But there is a trade-off between evaluating ahead of time

and sending data to GPU vs evaluating on GPU

● Constants are fast: any fixed quantity used by all threads

● Keep the kernel as straightforward as possible
● Avoid branches
● Avoid loops: I unroll all loops, pre-generate kernels with a

script (I hear loops can be OK in some cases)

● Keep the actual number of program runs on GPU low:
huge overhead. Better to pack the data and evaluate
separately. Faster than parallel program runs as well.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

